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Abstract

This paper describes a method for computing the steady state probability

vector of a nearly completely decomposable Markov chain. The method

is closely related to one proposed by Simon and Ando je and developed

by Courtois >2?-3T.Y However, the method described here does not require

the determination of a completely decomposable stochastic approximation

to the transition matrix and hence it is applicable to matrices other

than stochastic. An error analysis of the procedure is given which

results in effectively computable error bounds.
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1. Introduction

This paper will be concerned with techniques for treating a

discrete, finite Markov chain whose matrix of transition probabilities

can, after a suitable renuabering of the states, be written in the form

Al E2.- El
A11 E12 12it

(1.1) A E21 A22 E2Z

E E .. A

where the matrices E are small. The matrix A is nonnegative and

stochastic; i.e.

so that the vector 1 consisting of all ones is a right eigenvector

of A corresponding to the eigenvalue one. If, in addition, A is

irreducible , the eigenvalue one is simple and there is a unique, nor-

malized, positive left eigenvector y corresponding to the eigenvalue

one (in the irreducible case we shall call the eigenvalue the Perone

root). If A is acyclic and y is normalized so that I - 1, then

y is the vector of steady state probabilities for the chain. One of

* For terminology, see [141.
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the chief computational problems associated with Markov chains is the

determination of the vector y.

Chains with transition matrices of the form (1.1) are said to be

nearly completely decomposible. They arise naturally as models of systems

whose states can be clustered into aggregates that are loosely connected

to one another. They were first studied by Simon and Ando [7], who had

applications to economic systems in mind. A recent monograph by Courtois

[3] contains a history of the subject and extensive applications in the

computer sciences.

The usual computational procedure goes as follows. The off-diagonal

blocks E are amalgamated into the diagonal blocks A to produce
ii ii

a block diagonal approximation A* to A that has the form

A* dag(A*l * *
= dg 1 , A2 2 , ... , A)

This decomposition is Aone in such a way that each block A,, is

stochastic and irreducible. The steady state vectors y of the A*
ii

are then computed and the steady state vector of the original system

approximated in the form

Vly

(1.2) y V 2Y2

The quantities vi are calculated as the components of an eigenvector

of a matrix of order Z whose elements may be easily calculated from

I4
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the vectors y and the original matrix A. The computational advan-

tages of this method are obvious, since it reduces the solution of a

large eigenvalue problem to that of several potentially much smaller

ones.

The purpose of this paper is to resolve two difficulties with the

method as it is currently practiced. The first concerns the determi-

nation of the approximating decomposed matrix A*, a process frequently

refered to by the unfortunate term "aggregation".* There are in-

finitely many ways to incorporate the off-diagonal blocks of A into

the diagonal blocks in order to get an approximation A*. In some

instances this flexibility may be useful. For example [13], in certain

highly structured systems it is possible to determine the diagonal blocks

A so that the eigenvectors y, are exactly proportional to the cor-

responding pieces of y [cf. (1.2)]. In general, however, the indetermi-

nacy of A* is a nuisance; some choices of A* may be better than

others, but without further information there is no way of knowing. In

particular, the derivation of any general error bound for the approxi-

mation (1.2) must necessarily entail the assumption that the worst

choice has been made. In this paper a new method is proposed that does

not require intermediate approximations but works directly with the ori-

ginal matrix A.

The second problem treated here is that of showing how reasonably

sharp error bounds may be computed. Courtois [2, 3] has given an error

analysis for the procedure sketched above, which shows in part how it

By all natural usage, "aggregation" should refer to the determination
of which states are to be clustered together.

It
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behaves as the off-diagonal blocks become small. However, the analysis

is not suitable for computing error bounds for two reasons. First, the

analysis is asymptotic in the size of the off-diagonal blocks, and it is

not shown how small the blocks must be for it to be approximately correct.

Second, the analysis assumes that all the matrices involved have complete

systems of eigenvectors. Although it is unlikely that any given problem

will fail to have this property, it is not at all unlikely that it will

be near a problem that does, in which case an analysis based on eigen-

vector expansions will give unrealistic results owing to the ill condi-

tion of the matrix of normalized eigenvectors.

The techniques developed in this paper are not restricted to sto-

chastic matrices; rather they can be applied to find the dominant eigen-

value of almost any matrix of the form (1.1). What is required is that

the dominant eigenvalues of the Aul be simple and have sufficiently

well-conditioned eigenvectors and that the E be sufficiently small.
ii

If A is stochastic, these conditions are likely to be satisfied; but

as will be seen, the computational techniques test the conditions directly,

without reference to the properties of A. In particular, if one of the

Aii has the form (1.1), its dominant eigenvectors can be found independ-

ently of A by the method described in this paper. This observations has

important consequences for the process of multi-level aggregation described

by Courtois [3].

This paper is organized as follows. Sections 2 and 3 lay the theo-

retical foundations for the techniques to follow; Section 2 describes the

deflation of a simple eigenvalue, and Section 3 reviews perturbation theory

Lim
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for invariant subspaces. In Section 4 the technique is sketched broadly,

and in Section 5 it is justified in detail by the derivation of effectively

computable error bounds. In Section 6 the practical techniques from nu-

merical analysis required to implement the method are discussed. The paper

concludes with a numerical example.

Many of the results of this paper will be cast in terms of vector

and matrix norms. The symbol [ Ii will denote either the Euclidean vec-

tor norm defined by

lix I2 TX

or the spectral matrix norm defined by

IA I max iAxIl
lix g-I

The symbol 1" 11F will denote the Frobenius matrix norm defined by

11 A 112 a 2
F ij

Note that for any vector x,

lix Ii lix 11F

For more on these norms see [8].

It is important not to expect too much of error bounds cast in terms

of norms. In the first place, repeated use of inequalities such as the

triangle inequality tends to make them pessimistic. In the second place,
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such a bound can be difficult to interpret in terms of the components

of the vector thus bounded. For example, if lie 1I :- e, then any com-

ponent of e can be as large as c. But other things being equal, it

is more likely that each component is of order /rn.

In cases where an error bound is unsatisfactory, it may be necessary

to calculate an error estimate, in which an attempt is made to approximate

the error vector itself. For many problems this can be done, although

frequently a heavy computational price must be paid. Moreover, once an

error estimate has been calculated, it is hard to resist the temptation

to use it to improve the putative solution, which will set off another

round of error bounding. To feel the force of this temptation, the reader

is invited to consider the table of estimates given on page 187 of [3].

2. The constructive theory of a simple eigenvalue.

In this section are collected a number of results about a simple eigen-

value and its eigenvectors which can be found in one form or another scat-

tered throughout the literature. The results follow from a constructive

reduction of A to block diagonal form by means of rather simple similarity

transformations.

Let A be a matrix of order n with a real simple eigenvalue 5 cor-

responding to the eigenvector x. Since x is nonzero, it may be norma-

lized so that lix Ii- 1. Let the columns of nx(r-l) matrix Y form an

orthonormal basis for the subspace orthogonal to x; i.e.

(2.1) y~y I

Ii
a1



and

(2.2) YT X 0.

This implies that the matrix (x Y) is orthogonal.

Consider the similarity transformation

x x Ax TxAYI
(2.3) (x Y)T A (x Y) = xTx YTAy

yTAx yT AY

f Tiax x xTAY

T T
8y x YAYJ

It follows from (2.2) and the fact that xTx 1 1 that

(x Y)T A (x Y) =

where

g = xTAY

C M YTAY

The matrix C has for its eigenvalues the eigenvalues of A other than

8, hence C - 81 is nonsingular.

Consider now the further similarity transformation

( -q. Bq + q C(2.4)=
1o 1

0 C9I 0
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Since C - 81 is nonsingular, q may be chosen to satisfy

(C - 8I)Tq - g

from which it follows that the row vector in the upper right of (2.4)

is zero. Thus the two similarity transformations (2.3) and (2.4)

reduce A to the block diagonal form diag(8, B).

The composite similarity transformation that reduces A can be

found by multiplying the two transformations (2.3) and (2.4). Spe-

cifically, set

1 q] T
(x X) (x Y) (x Y + xq)

and

(2.5) (y Y) = (x Y) f } = (x-Yq Y)
I-q I

Then

(2.6) (x X) -

and

(2.7) A (x X) T =

A number of important facts can be read from this reduction. In the

first place y is the left eigenvector of A corresponding to 8.

TSince from (2.5), y x 1 1, it follows that y is not orthogonal to x.
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Since from (2.5)

y-x-Yq

an alternate expression for q follows from (2.1) and (2.2)

Tq Y yy

Moreover,

IlY 112  fi i+ lq 112

Similarly,

1x 112 + 1 q 1 2

All these results may be summarised in the following theorem.

Theorem 2.1. Let 5 be a simple eigenvalue of a matrix A of

order n, and let the corresponding eigenvector x be normalized so that

1. 1x111

Let y be the left eigenvector corresponding to B. Then y is not

orthogonal to x and may be normalized so that

T
2. yx =1

Moreover there are nx(n-1) matrices X and Y such that

T T
3. yy _- Y x X I

yy y =

.1
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4. yTx xTy - 0

5. (x X) -1 (y y)T

6. (y Y) T A x ) 01
0 Cj

whe re

7. C =Y TAX yTAY

The eigenvalues of the matrix C are the eigenvalues of A other than B.

If q is defined by either of the expressions

8. q - (C - BI) -TY TA Tx

9. q -YTy

then

10. X = Y + xqT

i. y = x -Yq

12. 1Jx i2--1y112= + lJqI2

3. Perturbation t

In this section the following problem will be addressed: given a

matrix A partitioned in the form

I A = B G1
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find a matrix U as near as possible to the identity such that the trans-

formed matrix A- UAU-1 has the form[ :1
The importance of this problem lies in the following observation. If v

T
is a left eigenvector of B , then (v , 0) will be a left eigenvector

T
of A , and (v , O)U will be a left eigenvector of A. Since

II(vT, o)U - (VT ,  o)- L I U

I(v T , 0)

T
the vector (v , 0) will be a good approximate left eigenvector of A

in proportion as U is near the identity matrix.

This problem has been treated in [91, and the following is a sum-

mary of the results required in this paper.. The reader is referred to

the reference for proofs.

The problem will have a solution only if the eigenvalues of B and

C are separated and G is sufficiently small. Unfortunately, the minimum

of the distances between the eigenvalues of B and C is too crude a

measure of separation to give satisfactory bounds. Instead the measure

6(B, C) inf JBP - P

will be used. The properties of 6(B, C) are summarized in the following

theorem.

'I.
I1

L--
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Theorem 3.1. The number 0 is zero if and only if B and C

have an eigenvalue in common. Moreover,

- 8 an eigenvalue of B)
. B _- y an eigenvalue of C%

2. 6 (B+E, C+F) 6 (B, C- E -

3. 6(diag(Bl, ... , Bp), diag(Cl, .... , Cq)] u min{6(B, C ):
pq i1 j

i-1 .. ,p; J-1,., q}

4. 6 (8, C) , 1(8I - C)-1  I •

Properties 2, 3, and 4 in the theorem are particularly important

in computational practice. Property 2 says that small changes in B and

says C make equally small changes in 6(B, C), a property not shared

by the minimum distance between the eigenvalues of B and C. Property 3

shows how 6 for a block diagonal matrix can be found from the 6 's

between the blocks. Finally, property 4 gives an explicit expression for

6 when one of the matrices is a scalar. These properties will be used

extensively in the derivation of the error bounds in §5.

The solution to the problem posed at the beginning of this section

requires that U be chosen in a specific form. Specifically, U will

be written

I -P [( I + ppT)-1/2 0(3.1) U - 0 I j (I + PTP)-/2

Here (I + ppT)-1/2 is the inverse of the unique positive definite square

- _ • 
;

- - - .L t - " - - .. .. . ; . . .,.... . .-. - , ,. ~ - . Z
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root of the positive definite matrix I + P -_ similarly for (I + PTp)-1/2.

It is easily verified that U is orthogonal; i.e. U Tu - I or U - UT .

Thus the problem becomes that of determining P so that

A1 (3.2) IF - 0

Conditions under which this can be done are contained in the following

theorem.

Theorem 3.2. In the notation introduced above, let

(3.3) y > G "F , IIH F

6 < 6(B, C)

If

(3.4) -= 1
- 2<4 '

then there exists a unique matrix P satisfying

(3.5) < II < 2 1 +
-6 1 -2 + rI-T 6

such that U defined by (3.1) satisfies (3.2). Moreover,

(3.6) B- (I + ppT)-/ 2 (B + PH) (I + PPT)l/2

The distance of U from the identity matrix is roughly lp 11F
1 11

'1
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The bound (3.5) shows that this distance depends linearly on JIG IIF

and inversely on 6(B, C). In other words, the bound becomes smaller as

G becomes small and larger as the spectra of B and C approach one

another; however, the bounds can be considerably worse than a naive

inspection of the spectra would indicate (cf. 1 in Theorem 3.1).

The expression for B is particularly interesting. When flH j -
0( JIG ii), as it will in §5, both PPT and PH are 0( fIG 112) and as

G approaches zero the eigenvalues of B approximate those at the ori-

ginal matrix up to terms of 0( IG ). This quadratic behavior will

prove critical in deriving workable error bounds.

4. The approximation algorithm

In this section an algorithm for approximating the dominant eigen-

vector of a matrix of the form (1.1) will be described. It is assumed

that the diagonal elements A. are all irreducible. In order to keep

the exposition simple, the algorithm will be described for a 3x3 parti-

tioning, i.e. Z = 3. The general case is a trivial extension.

For each i, let B > 0 be the Perone root of Aii and let x. >Fo ac., e ii :i

be its corresponding right eigenvector. Since Bi is simple, Ai has a

decomposition of the form described in Theorem 2.1, viz.

(Yi Yi)T A (xi, Xi) i
0 ci

It then follows from Theorem 2.1 that the inverse of the matrix

II

i1
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x 0 Xi 0

X 0 x20 0 X20

o 0 x3  0 0 xj

is

y 0 0 0
1 

T

0 0

o 0 YT

y T 3

TT

0T T

!021 $2 023 g2l 0 22

9T T0
(41)= 31 ~32 ~3 g3 1 g3 2 0 [

.10 h1  h1  C1  F 2 F1  C~

h 0 h F C F
21 23 21 2 23

h 3 1 h 3 2 0 F 3 1 F 3 2 C 3

where
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y T E 9T .yTE

ijY iEi xj Sij YEij Xi

T T

h YE x , F YE X
ii ij i i ± ijij

Because y > 0 and xj 0 , it follows that i -0 if and only if
i ii

E - 0. Hence, B is irreducible, since A is. Let 1 be the Perone

root of B with right eigenvector u and left eigenvector

Tv ( ' 2' 3

The approximation to the left eigenvector y of A is then given by

V lYl

(4.2) y - v 2y 2

v3 Y3
L33

This algorithm is extremely simple. All that it requires is the

calculation of the left and right Perone vectors of the diagonal blocks

of A, the formation of the matrix B from the Eiji, and the calculation

of the left Perone vector of B. Except for the initial grouping of states

to get the partition (1.1), the process is entirely deterministic, re-

quiring no assimilation of the matrices E into the diagonal blocks

Aii.

-Mmi
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5. Error bounds

In this section error bounds for the approximation (4.2) will be

derived. The bounds provide a formal proof of convergence of the algo-

rithm, as well as considerable insight into its behavior. The practical

'a computation of the bounds will be discussed in the next section.

The approach is to use Theorem 3.2 to obtain an exact expression for

y in terms of a vector V that is the left eigenvector of a matrix B

lying very near to B. A second application of Theorem 3.2 bounds

jv -Vj, and hence the error in the approximation (4.2) to y.

For the first step, the notation of Theorem 3.2 coincides exactly

with the notation of the approximation algorithm. Consequently if (3.2)

is satisfied, there is a matrix U of the form (3.1) that reduces

TY AX to the form (3.2). Now the eigenvalues of B are eigenvalues of A.

Let V be the left eigenvector of B corresponding to the Perone root

of A. Then

(5.1) yT , (VT, O)uTYT- vT(I + ppT)-1/2 (1, P )yT

The relation between V and v must now be considered. Let

(5.2) iP 1F < 7

be any bound, presumably obtained by an application of Theorem 3.2. As

in the first part of the development of §2, extend v to an orthogonal

matrix (v, V) such that

TP 01

(5.3) (v, V)T B (v, V)

[r 
R



- 18 -

and let

6 pS 6 (p, R)

Let

(v, V)T (B+PH) (v,v) :3
By Theorem 3.1

60, R) a 6 - 2vrn
p

Moreover,

(5.4) IIi d - r + i
and

(5.5) Ps I T TI

Hence by Theorem 3.2 if

7r( T r I + i <2 4
(6 - 2)rn)

there is an eigenvector

v- v+e

of B + PH satisfying

(5.6) Iv - I " le I a 27 n
p
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From (3.6) we have

V - (I + ppT)l/2 . (v + e) (I + ppT)l/2

Hence from (5.1)

T T T
y (v + e) (I, P )y

~T T 0 0
Yl 0 0 Y 0 0

LI 
1  J1

T T Tp ~ T+Y2 0 + v TP  0 Y 2 0 +

-vT T o
0 0 0 0 Y

YlT 0 0 YIT 0

T T T T
+ eT  0 Y + e P 0 Y

0 0 Y30 0 ,,

But the first term in this sum is the approximation (4.2) to y. Hence,

since ly. I -1 , the final bound becomes

2ir~ 2

(5.7) y - v 2y 2  < Ir + 2 max{ ]Yi + 2"r2n
-2nrn - 2rn

v3 y3j p 0

It is important to note that in deriving the bound (5.7) it has

been implicitly assumed that the Perone root of A was to be found in

F and that this root corresponded to the Perone root of B. This cannot

be insured a priori without making further assumptions. Essentially what

is required is that the eigenvalues of the Cii, be sufficiently removed

from the 1 's so that subsequent perturbations cannot turn one of them

. j.
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into a Perone root. Although a formal analysis is possible, it will not

be given here, since in practice it is easy to see whether the largest

eigenvalue of B is the Perone root.

When A is stochastic, the 0( liE 112) perturbation in passing from

B to B + PH is critical to the analysis. This is because all the Bi

are within O( 1IE 11) of unity, so that a perturbation of 0( IE I) will

completely scramble the eigenvectors.

For computational purposes we have scaled the x. and yl so that

lixi i -1 and
T

(5.8) Yii i

In fact the approximation algorithm will yield the same results for any

scaling, provided only that (5.8) is satisfied. To see this, suppose

that x i  is replaced by x = 6ixi where 6 is a nonzero scaling

factor. Then (5.8) requires that yi be replaced by Yi - 6ilyi" It

is easily seen that this results in B being replaced by D- IBD, where

D - diag(6., ' 2 3). Consequently the left eigenvector of D-1 BD is

vT D and the approximation to the left eigenvector of the entire system

is (6 lVlY, 6 2'jy, 63 3 Y3 ) - (v y T, V2T, 3YT which is the same as

(4.2).

For stochastic matrices there is a natural scaling of the yi that

leads to a beautiful interpretation of the approximation process. Speci-

fically, let yi bescaled so that

(5.9) 1 Ty 1

zL _ ,, L ..... i ~.i . i i , . * ,- - '- =
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i.e. so that y~ can be interpreted as a vector of probabilities. Write

i ~ +pi

If xi is given the scaling implied by (5.8), then

and

(5.0)T T
(5.0)YiAiipi -

8ilpi 0

Moreover, since Ai is within 0( 1IE 11) of a stochastic matrix, it

follows from Theorems 3.1 and 3.2 that if 6( is C 1) is large enough

the vector p will satisfy

(5.11) Pi = 0( lIE 1)

It will now be shown that, up to terms of 0C 11E [),the matrix B

in (4.1) is stochastic. Consider the first row sum

+ + T Ax+yT Ex+yTEx
1 .12 1 ~3 ' yl1 1 x1  1 y1 12x2  1 1 1 3x3

=- T (All +E 1+ E + YT A +yT(
111 12- E131) y1A11p1 + 4 1 2P2 + 13p3

a T (Al (1E12)
1 E121 + 1 31)+OCJEf

by (5.10) and (5.11). Because A is stochastic All1 + E11+ E 3 -

Hence

81 + 12 + 013 - y 1 + 0( lIE I + 0( E 12
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by (5.9). Thus the first row sum of B is within O( liE 112) of one,

and so are the other row sums.

The nearly stochastic matrix B -- or rather B which differs

from B by 0( lIE112) -- controls the long term behavior of the Markov

chain. To see this note that by an application of Theorem 2.1 the matrix

(4.1) can be reduced to the form diag(B, C). Now the behavior of the

kMarkov chain is controlled by the behavior of the powers A (k = 1,2,3,...),

and this behavior can be determined by examining the behavior of the

powers of diag(B, C).

k-
Specifically, diag B,)k diag(B, -C-k). Since the eigenvalues of

are less than those of B, the powers will approach diag(B k , 0).

Since B has a dominant eigenvalue of one, B will tend more slowly to

the matrix Vw T, where v and ; are the left and right eigenvectors

corresponding to one. In terms of the original Markov chain, if the state

(k) ivector y is written in the form

V(k) (k)

y(k) V(k) (k)y V 2 Y2

V (k) (k)
V3 y3

1Ty(k) thenthe (kwhere 1 Y 1 1, then the y will converge swiftly as C - 0 and

(k) -kthe v k ) will converge more leisurely as B approaches its limit. This

justifies calling B the long term transition matrix of the chain.

Of course this double limit behavior of nearly completely decomposable

chains has been remarked by numerous researchers, beginning with Simon

KA
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and Ando [7]; the approach taken here merely makes explicit the factors

that control the rates of convergence. Although the matter will not be

persued in this paper, it should be possible to obtain numerical conver-

gence rates from an analysis of the behavior of the powers of the matrices

B and C .

6. Practical details

The details of the implementation of the approximation algorithm and

the computation of the bounds will depend on the sizes of the matrices in-

volved. Three classes of matrices may be distinguished

1. Matrices that can be stored as an array in the high speed

memory of a computer. Typically, an upper bound for the

order of such matrices ranges from fifty to five hundred,

depending on the computer.

2. Matrices that cannot be stored in array form but whose

structure permits the efficient solution of a system of

linear equations with the matrix elements as coefficients.

Examples of such matrices are band matrices and "sparse"

matrices [4]. Their orders can be very large.

3. Matrices that are so large that the only thing one can do

with them is to form their product with a vector.

Each of these classes will be discussed in turn.

*NOW
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If the matrices Aii lie in the first class, the appropriate pro-

cedure is to use the QR algorithm to reduce Aii to quasi-triangular

form. Specifically, there exists software [11] to compute an ortho-

gonal matrix (xi, Y such that

(xi, Y)T Ai. (xi, Y) = i

0 C.

where C is quasi-triangular, i.e. block upper triangular with lxl
iand 2x2 blocks on its diagonal. Because C i  is quasi-triangular it

is extremely cheap to solve linear systems involving C - I , which

means that it is practical to compute q in part 8 of Theorem 2.1,

from which yi can be calculated.

The next step is to compute B. Since this requires a pass over

the matrices Eij, this is also a logical time to compute the bounds

n and y in (3.3). In very large problems it is unlikely that there

will be storage to contain the matrices Xi  and Y. so that H and
G cannot be computed explicitly. However, bounds may be obtained byTT
the following procedure. For each E compute Ei x and yTE

Then set

i,j i ij

(6.2) Y II y E 112 11 Xi  112 IY Eij 112 1yi  112

i,j 
ij

A bound ¢ on the off-diagonal elements of C will be needed later.
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It can be calculated at this poirt in the form

(6.3) C IITi I lEi II 1iXj 1 1 I 11Ei II IIX II
i,j i,j

The application of the perturbation theorem requires a lower bound

6 on 6(B, C). Because Ci is quasi-triangular, 11 (8 - C) - I can be

cheaply estimated by a variant of the inverse power method [1,6]. Set
B+

= max {8 I and 8 - min {8 1. Then seti i

(6.4) 6 -min f(c + I - C ) -1 11- - (a+ - 8-) - Ob - Oc '

where 4b is any upper bound on the norm of the off-diagonal part of B.

It can easily be shown by repeated appeals to Theorem 3.1 that 6 is

indeed a lower bound for 6(B, C).

Having computed n, y, and 6, the bound 7r in (5.2) can be

computed from (3.5). The matrix B may now be analysed in the same

manner as the A.. [cf. (5.3)] to get a bound on 6(p, R). At this

point the bounds (5.4) and (5.5) may also be computed. Finally, the

bound (5.7) the accuracy of the approximation may be computed

For systems of large sparse matrices, it is possible to compute

right and left eigenvectors xi and yi oy means of the inverse power

method [ 8 1. However, it will not generally be possible to maintain

the matrices X, Yi. and Ci in the high-speed memory of the computer

in question. Fortunately the matrix (xi, Yi) can be written as a House-

holder transformation in the form

T
(xi, Y) -I - 2wiwi ,
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where wi  is a vector of norm unity that can be determined from xi

alone (for details see [8]). If T - 1, then it follows fromxl i

Theorem 2.1 that Ijx fl - jyi 1  . Hence n, y, and = may be es-

timated as in (6.1), (6.2), and (6.3). Finally, since from item 7
T

in Theorem 2.1, it follows that Ci Y AiY, the separation 6(B, C)

may be bounded as described above, but this time using the technique of

implicit deflation (12] to solve systems involving YiTAYi - The

rest of the bounding process proceeds as above.

For matrices of the third class, i.e. matrices for which only matrix-

vector multiplication is possible, the eigenvectors xI  and yl must be

computed by the power method or its variants [5, 10]. The numbers n and

y may be computed as described above. Unfortunately, there is no way of

computing a lower bound on 6(B, C) since there is no way of solving linear

systems involving Ci W 7 T AYi. The best that can be done is to compute an

approximate upper bound that may be a reasonable estimate. From item 8

in Theorem 2.1 we have

q (C a B -Tl  T AT
< - ) YiAiixi i

and from item 12,

T T

(llyi III_ 11 2

Hence, in analogy with (6.4), it may be hoped that the number

- L "
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I T

6. A numerical example.

In this section the techniques of this paper will be applied to a

matrix analysed previously by Courtois. The matrix with its partitioning

is given in Table l.*

Table 2 gives the details of the calculation of the approximation

y in (4.2). The vector is compared with the true vector y, which

9 has been scaled so that Ily - y 11 is a minimum. Table 3 gives the de-

tails of the computation of the error bound (5.7).

The error bound is good enough for practical purposes, even though

it is an order of magnitude bigger than the actual error. This overesti-

mate is in part due to the repeated use of norm inequalities in the deri-

vation of the bound. It is also due to the fact that Theorem 3.2 bounds

JP I.., whereas it is clear that the smaller spectral norm could be used

in the derivation of (5.7). As was pointed out in the introduction, a

pessimistic view of the error is inevitable when on attempts to bound it

rather than estimate it.
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The matrix, as reported in [2,3] is not stochastic; the sixth row does
not sum to one. Since the property of being stochastic is not necessary

to the procedure described in this paper, the matrix is left as reported.



o 0 0 0 0 0% 0n

o~~O 0 0 u
o o 0 0D 0 0T 0 0e
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E- 0. 00

CD

Cu CDo 0 0 '

0% 00 0D 0 00 0 0 % 0 0n 0 00 0 0 C 0 0 0
Cu 0 0 0 00 0 0

CuC
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Tab le 2

Computation of y (4.2)

xj

0,9991 0.9993 0.9993

0.5772 0.6954 0.7074 0.8080 0.5774 0.4170

-'0.5773 0.7218 0.7069 0.6061 0.5774 0.9624

0.5776 0.3150 0.5774 0.3527

0.9991 0.0010 0.0001

0.0005 0.9993 0.0001

0.0002 0.0001 0.9999

T '

0.4433 0.6130 0.6539

y y

0.308281 0.307971

0.320022 0.320321

0.139653 0.139726

0.495361 0.495323

0.371565 0.371616

0.272669 0.272734

0.629330 0.629282

0.230652 0.230659

4.5 .10-4



Table 3

Computation of the Error Bound

Norms of Off-diagonal Matrices

I= I F - 4.54 -1-

y- JIG 11F - 2. 14 -1-

Ob = 9.76 * 0-

- 9.29 -1-

Computation of 6 (6.4) and Yr (3.5)

-0.9999 a- - 0.9991

-I8 -C ii) 1Ii 0.2352, 0.6992, 0.4487

6 - 0.2325

- 0.0013 (from (3.0)1

- 9.22 * 0-

Final error bound

6 = 2.81 - 10-4

fr Ii- 3.095 [cf (5.3)]

-0.0017

Ie I :S 2.99 * 10 3 (cf (5.6)]

li-y If~4.23 10-
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